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Abstract—In this paper, we examine a millimeter-wave
(mmWave) wiretap scenario where a multiple-antenna base
station (Alice) communicates with a legitimate user (Bob)
via a reconfigurable intelligent surface, while multiple col-
luding eavesdroppers (Eves) attempt to passively intercept
the communications using the maximal-ratio combining
scheme. We develop a framework for achieving the max-
imum effective secrecy throughput (EST) that meets both
reliability and secrecy constraints. Firstly, we derive a
generalized and tractable form of the independent fluctu-
ating two-ray (IFTR) distribution for accurately modeling
mmWave fading channels. Secondly, we propose a novel
approximation method to statistically characterize the end-
to-end channels, considering the phase-shift estimation
errors at both Bob and the colluding Eves over the IFTR
channels. Finally, we derive a new closed-form EST metric
and its asymptotic expression.

I. INTRODUCTION

Millimeter-wave (mmWave) frequencies offer sig-
nificantly more bandwidth than traditional microwave
frequencies. However, their high directivity and signifi-
cant attenuation require precise beamforming. Recently,
reconfigurable intelligent surfaces (RISs) have been pro-
posed to overcome blockages caused by obstacles like
buildings and trees. Furthermore, physical-layer security
(PLS) emerges as a key defense mechanism, offering
information-theoretic security. Early seminal studies in-
troduced the wiretap scenario, where an eavesdropper
(Eve) attempts to intercept the communications between
a transmitter (Alice) and a receiver (Bob) [1]. Achieving
information-theoretic security requires the eavesdropping
channel capacity (CE) to be smaller than the legitimate
channel capacity (CB), resulting in a secrecy capacity
(Cs) equal to the difference between CB and CE. The
reliability constraint is met if the codeword rate Rc does
not exceed CB, while the secrecy constraint requires the
redundancy rate Rr =Rc−Rs to be higher than CE, with
the target secrecy rate Rs.

Alice can satisfy the reliability constraint if the legit-
imate channel’s instantaneous channel state information
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(CSI) is known. However, the secrecy constraint may
not be guaranteed due to a lack of Eve’s instantaneous
CSI in passive eavesdropping scenarios. Therefore, it
is more practical to assume that Alice has knowledge
of the average CSI of the eavesdropping channel [2].
Recently, the effective secrecy throughput (EST) has
been introduced, which captures both the reliability and
secrecy constraints of wiretap channels [3], [4]. The EST
determines the average rate of confidential information
transmitted from Alice to Bob without being eaves-
dropped on. Furthermore, the EST can be maximized by
adaptively adjusting Rc and Rs according to CB [3] (i.e.,
adaptive-rate scheme), considering the maximum secrecy
outage due to the eavesdropping channel denoted as P Eve

out
[4]. The EST of the adaptive-rate scheme has not been
studied in the context of RIS-aided mmWave PLS.

Given the high complexity of the RIS-induced mul-
tiplicative fading channels, only a few studies have
investigated the information-theoretic PLS of RIS-aided
mmWave systems over Rician channels [5], [6]. Gener-
ally, mmWave links are often described using the Rician
fading model, incorporating a dominant line-of-sight
(LoS) component along with scattered ones. However, in
2017, the fluctuating two-ray (FTR) fading model, which
considers two fluctuating LoS components alongside a
diffuse component, proved to offer a better fit compared
to the Rician model [7]. In 2023, a more generalized
independent FTR (IFTR) model was introduced, where
the two LoS components fluctuate independently and
experience differing fading severity [8].

In this paper, we investigate the information-theoretic
EST of an RIS-aided mmWave system that satisfies both
reliability and secrecy constraints using the adaptive-rate
scheme. Furthermore, we consider the phase estimation
errors at both Bob and multiple colluding Eves. We
newly derive a generalized closed-form expression for
the IFTR distribution, a state-of-the-art fading model
that accurately captures the statistical characteristics
of mmWave channels. We optimize the RIS reflection
phase shifts with the maximum ratio transmission (MRT)
beamforming at Alice, and derive new approximate
closed-form expressions for the received SNR distribu-
tions at both Bob and multiple colluding Eves using a
maximal-ratio combining (MRC) scheme. We formulate



the maximum EST of RIS-aided mmWave systems for a
given target secrecy rate Rs in the adaptive-rate scheme.
Exact closed-form expressions for P Eve

out and EST along
with its asymptotic expression are derived.

II. SYSTEM AND CHANNEL MODELS

A. System Model

In our wiretap scenario, a BS (Alice) sends confiden-
tial messages over mmWave channels to a user (Bob) via
an RIS, while E colluding Eves try to intercept. Alice
is equipped with M antennas, and both Bob and the
e-th Eve (e = 1, · · · , E) have a single antenna. The
direct link between Alice and Bob is obstructed and
communication link is realized through the RIS. The RIS
consists of L passive reflecting elements arranged in a
uniform array, configurable via an RIS microcontroller
connected to Alice. Considering a passive eavesdropping
scenario, Alice knows only the average CSI regarding
Eve while possessing the instantaneous CSI for Bob [2].

The signals transmitted from Alice, reflected by the
RIS, and received by Bob and the e-th Eve can be
expressed, respectively, as yB = gH

BΦHfs+nB, yEe =
gH

EeΦHfs + nEe , where f is the normalized beam-
forming vector, s is the transmit symbol satisfying
E[|s|2] = 1 with E[·] the statistical expectation, while
nB ∼ CN

(
0, σ2

B

)
and nEe ∼ CN

(
0, σ2

Ee

)
are respec-

tively the complex zero-mean additive white Gaussian
noise (AWGN) at Bob and the e-th Eve with vari-
ances σ2

B and σ2
Ee . Additionally, H ∈ CL×M denotes

the channel matrix between Alice and the RIS, where
H=

(
haL

(
θAoA,a

RIS , θAoA,e
RIS

))
aHM
(
θAoD,a

BS , θAoD,e
BS

)
, with h ∈

CL×1 the Alice-RIS complex channel coefficient vector,
aL
(
θAoA,a

RIS , θAoA,e
RIS

)
and aM

(
θAoD,a

BS , θAoD,e
BS

)
the array re-

sponse vectors containing the azimuth (elevation) angle
of arrival (AoA) θAoA,a

RIS (θAoA,e
RIS ) at the RIS and angle of

departure (AoD) at the BS θAoD,a
BS (θAoD,e

BS ), respectively.
gB ∈C1×L and gEe ∈C1×L represent the RIS-Bob and
RIS-e-th Eve channel vectors, respectively expressed as
gB =gbaL

(
θAoD,a

RIS , θAoD,e
RIS

)
and gEe=geaL

(
θAoD,a

RIS , θAoD,e
RIS

)
,

where gb and ge are the complex channel coefficient vec-
tors, aL

(
θAoD,a

RIS , θAoD,e
RIS

)
denotes the array response vector

with the azimuth (elevation) AoD θAoD,a
RIS (θAoD,e

RIS ) at the
RIS. Given a uniform square planar array implemented
at both Alice and the RIS, the array response vector can
be generally expressed as [6], [9]

aU

(
θA,aP ,θA,eP

)
=
[
1,· · ·, ei2π

d
λ(xsin(θA,aP )sin(θA,eP )+ycos(θA,eP )),

· · ·,ei2π
d
λ((
√
U−1)sin(θA,aP )sin(θA,eP )+(

√
U−1)cos(θA,eP ))

]T
, (1)

where i denotes the imaginary unit, d and λ respectively
indicate the element spacing and signal wavelength,
0 ≤ x, y <

√
U are the element indices in the plane,

U ∈{L,M} denotes the number of elements in the array
response vector, A ∈ {AoA,AoD} and P ∈ {BS,RIS}.

The phase shifts of all RIS elements are controlled
via the diagonal matrix Φ = diag(ρ). The amplitude
responses are given by ρ =

[
eiφ1 ,· · ·,eiφL

]
. Here, φl ∈

[−π, π), (l = 1, · · · , L), is the controlled phase shift of
the l-th RIS element.

Theorem 1. By employing MRT beamforming at Alice
and considering phase estimation errors at Bob, the
instantaneous received SNR at Bob is given by γB =

γ̄BM
∣∣∣∑L

l=1 |hl| |gB,l|eiθ̃B,l

∣∣∣2 , where γ̄B=Es
σ2

B
with Es the

average transmitted energy per symbol, |hl| and |gB,l|
respectively the amplitudes of Alice-RIS and RIS-Bob
channels for the l-th RIS element, and θ̃B,l the phase
estimation errors at Bob.

Proof. See Appendix A.

Lemma 1. Taking into account the residual phase errors
from phase trackers like phase-locked loops (PLL), the
phase estimation errors θ̃B,l at Bob can be modeled
by a zero-mean von Mises distribution, expressed as

fθ̃B,l

(
θ̃B,l

)
= e

κPE cos(θ̃B,l)
2πI0(κPE) , θ̃B,l ∈ [−π, π), where I0 (·)

denotes the modified Bessel function of the first kind of
order zero, and κPE indicates the loop SNR, which is the
amount of SNR within the bandwidth of the PLL.

Proof. It follows from the results of [10], [11].

Theorem 2. Considering phase estimation errors at the
e-th Eve, the instantaneous received SNR is given as

γEe = γ̄EeM
∣∣∣∑L

l=1 |hl| |gEe,l| eiθ̃E,l

∣∣∣2 , where γ̄Ee = Es
σ2

Ee
,

|gEe,l| is the amplitude of the RIS-e-th Eve channel
for the l-th RIS element, and θ̃E,l denotes the phase
estimation errors at the e-th Eve.

Proof. See Appendix B.

Lemma 2. Since the MRT beamforming is applied
at Alice to maximize the received SNR at Bob, Eve
completely lacks knowledge about the channel phases,
and thus Eve’s phase estimation errors θ̃E,l are uniformly
distributed on [−π, π). As a result, γEe in Theorem
2 can be rewritten as γEe = γ̄EeML2|kEe |

2, where
|kEe |

2 is exponentially distributed with the probability
density function (PDF) expressed as f|kEe |2

(
|kEe |

2
)

=

L
2 e
−(L2 )|kEe |

2

.

Proof. Following [10, Corollary 2], the phase estimation
errors θ̃E,l are uniformly distributed in [−π, π), thus the
equivalent channel of the e-th eavesdropping link |kEe |

4
=∣∣∣ 1

L

∑L
l=1 |hl||gEe,l|eiθ̃E,l

∣∣∣ closely resembles Rayleigh fad-

ing with zero-mean and variance E[|kEe |
2
] = 1/L.

Hence, γEe in Theorem 2 is exponentially distributed by
following [5]. This is equivalent to γEe = γ̄EeML2|kEe |

2,
with the PDF of |kEe |

2 expressed as in Lemma 2. This
completes the proof.



Lemma 3. Considering the MRC colluding scheme and
assuming that eavesdropping links are independent and
identically distributed (i.i.d.) with γ̄E1

= · · ·= γ̄EE = γ̄Es ,
the instantaneous SNR at the super Eve is given as
γEMRC = γ̄EsML2kEMRC , where kEMRC =

∑E
e=1|kEe |

2.
The cumulative distribution function (CDF) of kEMRC is

expressed as FkEMRC
(kEMRC)=

γ(αE,βEkEMRC)
Γ(αE) , where αE =E,

βE = L/2, and γ(·, ·) is the lower incomplete Gamma
function [12, (8.350.1)].

Proof. In the MRC scheme, the super Eve combines the
instantaneous SNR of all channels, representing the most
powerful eavesdropping scenario. Assuming all channels
are i.i.d., one should find the distribution of kEMRC =∑E
e=1 |kEe |

2. From Lemma 2, |kEe |
2 is exponentially

distributed with the rate parameter of L/2. Hence, the
sum of E i.i.d. exponential RVs follows a Gamma
distribution with the shape parameter αE = E and the
inverse scale parameter βE = L/2. This completes the
proof.

Remark 1. From Lemma 3, it is deduced that E[γEMRC ]=
γ̄Es2MLE due to E[kEMRC ] =αE/βE = 2E/L, indicating
that E[γEMRC ] scales linearly with L, E, and M.

B. Proposed IFTR Channel Model

In Theorem 1, |hl| and |gB,l| are assumed to follow
the state-of-the-art IFTR fading model. The IFTR model
has been proposed recently in [8], and a more tractable
representation has been formulated in [13]. The com-
plex baseband voltage of the mmWave channel can be
expressed as [8]

V =
√
ζ1V1e

iψ1 +
√
ζ2V2e

iψ2 +X + iY, (2)

where V1 and V2 are the average amplitudes of the first
and second specular, i.e., LoS, components, while ψ1

and ψ2 correspondingly represent the independent and
uniformly distributed random phases of the two fluctuat-
ing specular waves. The term X + iY in (2) denotes the
diffuse component with X,Y ∼ CN

(
0, σ2

)
. Moreover,

ζ1 and ζ2 are the unit-mean Gamma distributed RV with
the PDF given by fζι(υ) =

mmιι υmι−1

Γ(mι)
e−mιυ, ι=1, 2,

where Γ(·) denotes the Gamma function [12, (9.310.1)].
Subsequently, m1 and m2 are the fading severity pa-
rameters of the specular components. Considering that
ζ1 and ζ2 are independent with different fluctuations,
we define the physically-motivated parameters K and
∆ as K =

V 2
1+V 2

2

2σ2 , ∆ = 2V1V2

V 2
1+V 2

2
, where K denotes the

power ratio of the specular to the diffuse components
and ∆∈ [0, 1] provides a measure of the similarity of the
specular components. Additionally, ancillary parameters
K1 and K2 defining the power ratios of each specular
component to the diffuse one are respectively given

by [13] K1
∆
=

V 2
1

2σ2 =
K(1+

√
1−∆2)

2 , K2
∆
=

V 2
2

2σ2 =

K(1−
√

1−∆2)
2 . When ∆ = 0 and K = 0, IFTR models

reduce to the Rayleigh distribution. We define the aver-
age power envelope of the IFTR random variable (RV)
as E[|V |2]

∆
= ν = V 2

1 +V 2
2 +2σ2 = 2σ2(1+K), and the

total power of scattered waves as 2σ2 =ν/(1 +K).

Theorem 3. Let Z∼IFT R (m1,m2,K1,K2,∆, σ) be
the squared IFTR RV. The PDF of Z is given by

fZ (Z) =

∞∑
j=0

ΛjfG
(
Z; j + 1, 2σ2

)
, (3)

where fG
(
Z;j+1,2σ2

) ∆
= Zje

− Z
2σ2

Γ(j+1)(2σ2)j+1 . Also, we have,
and Λj is given as in (4), where m1, m2 can take
arbitrary real values, (x)n = Γ(x + n)/Γ(x) is the
Pochhammer symbol, (·)! is the factorial, and 2F1(·) is
the Gauss hypergeometric function [12, (9.14.2)].

Proof. We derive (3) by following [14]. Notably, another
closed-form expression of (4) was derived in [13, (11)] in
terms of the regularized Gauss hypergeometric function.
However, this function is indeterminate when its third
parameter is a non-positive integer. With the help of [12,
(9.101.1)] and following [14], we arrive at (4), which is
valid for both positive and non-positive integer values
of the third parameter in the Gauss hypergeometric
function. This completes the proof.

Lemma 4. Let X
∆
=

∏N
`=1

√
Z` with the ς-

th moment of X given by E[Xς ] = µX(ς) =∏N
`=1

∑∞
j`=0Λj`

(
2σ2

`

)ς
2

Γ(1+j`+
ς
2 )

Γ(j`+1) .

Proof. The ς-th statistical moment of X can
be calculated as E[Xς ] =

∏N
`=1E

[
(Z`)

ς
2

]
=∏N

`=1

∫∞
0
Z
ς
2

` fZ`(Z`)dZ`. With the help of (3),
[12, (3.381.9)] and [12, (8.356.3)], we finally arrive at
the result in Lemma 4. This completes the proof.

III. PROPOSED STATISTICAL APPROXIMATION

Theorem 4. Let YB,l
∆
= |hl| |gB,l|eiθ̃B,l and ZB

∆
=∣∣∣∑L

l=1 YB,l

∣∣∣2, with l = 1,· · ·, L. For all values of l,
hl and gB,l are i.i.d. RVs. Meanwhile, for each l-th
RIS element, hl and gB,l are i.n.i.d. RVs . Thus, YB,l

are i.i.d RVs for all values of l. The true PDF of ZB

can be approximated by that of a generalized Gamma
distribution, i.e., ZB∼G(αZB , βZB), given by

fZB(z;αZB , βZB)=
1

2
√
z

β
αZB
ZB

Γ (αZB)

(√
z
)αZB−1

e−βZB

√
z, (5)

where αZB = LαYB,l and βZB = βYB,l , with αYB,l and

βYB,l expressed as αYB,l=
(E[YB,l])

2

V[YB,l]
=

(µYB,l(1))
2

µYB,l(2)−(µYB,l(1))
2 ,

βYB,l=
E[YB,l]
V[YB,l]

=
µYB,l(1)

µYB,l(2)−(µYB,l(1))
2 , with V [·] the statistical

variance. In addition, µYB,l(1) and µYB,l(2) are respec-
tively the first and second moments of YB,l.



Λj=
mm1

1 mm2
2

Γ(m1)Γ(m2)

j∑
k=0

(
j

k

)j−k∑
q=0

(
j−k
q

)
Kq

1K
j−k−q
2

j!

k∑
ı=0

(
k

ı

)
Γ (m1+q+ı)

(K1+m1)
m1+q+ı

Γ (m2+j−k−q+ı)

(K2+m2)
m2+j−k−q+ı

×
(
K∆

2

)2ı
(−1)

k


(m1+q+ı)k−2ı(m2+j−k−q+ı)k−2ı

(
K2∆2

4(K1+m1)(K2+m2)

)k−2ı

2F1

(
m1+q−ı+k,m2+j−q−ı;1+k−2ı; K2∆2

4(K1+m1)(K2+m2)

)
(k−2ı)! , k>2ı,

2F1

(
m1+q+ı,m2+j−k−q+ı;1−k+2ı; K2∆2

4(K1+m1)(K2+m2)

)
Γ(1−k+2ı) , k≤2ı.

(4)

Proof. See Appendix C.

Corollary 1. For a large L, the average received SNR
at Bob can be written as E[γB] = γ̄BML2α2

YB,l
β−2
YB,l

.

Proof. From Theorem 4, it is deduced that E[ZB] =
LαYB,l

(
LαYB,l + 1

)
β−2
YB,l

. For a large L, LαYB,l � 1,
hence E[ZB] = L2α2

YB,l
β−2
YB,l

. With the help of Theorem
1, the final expression of E[γB] can be given as in
Corollary 1. This completes the proof.

Remark 2. Corollary 1 shows that E[γB] is directly
proportional to M and L2, indicating that increasing
both the number of antennas M at Alice and the number
of RIS elements L could enhance the average received
SNR at Bob. However, the impact of L is more pro-
nounced, as the optimal beamforming design in Theorem
1 results in a performance gain of ML in the Alice-RIS
links and an additional gain of L in the RIS-Bob links.
Furthermore, using Remark 1, the ratio E[γB]

E[γEMRC ] scales
with L, suggesting that increasing L yields a larger
performance gain than increasing M .

IV. EFFECTIVE SECRECY THROUGHPUT ANALYSES

We assume that Alice knows Bob’s instantaneous CSI
[2], ensuring that the reliability constraint Rc ≤ CB is
always met by adaptively setting the codeword rate to
the instantaneous channel capacity, i.e., Rc = CB. The
violation of the secrecy constraint is then defined as the
probability that Rr is less than CE. According to [4, (3)],
the EST of the adaptive-rate scheme under the MRC
colluding attack is given by

Ψ=Rs
(
1−P Eve

out

)
= Rs(1−Pr(Rr≤ log2(1+γEMRC))), (6)

where P Eve
out = Pr(Rr ≤ CE) is the secrecy outage

due to the eavesdropping channel, and γEMRC is the
instantaneous SNR at the super Eve, defined in Lemma
3. With the help of Lemma 3, a closed-form expres-

sion of (6) is derived as Ψ = Rs
Γ(E)γ

(
E,

(2CB−Rs−1)
2MLγ̄Es

)
.

In the adaptive-rate scheme, Rs is adaptively adjusted
within 0 < Rs < CB. As a result, CB = log2(1 +
γ̄BMZB) > Rs, i.e., ZB >

(
2Rs−1

)
/ (γ̄BM), has to

be satisfied, which is achievable owing to the availabil-
ity of the instantaneous CSI ZB. Thus, CB, averaging
over all acceptable realizations of ZB, is calculated

as CB =
∫∞

(2Rs−1)/(γ̄BM)
log2(1+γ̄BMZB)fZB(ZB) dZB,

where fZB(·) is given in (5). To ensure that Eve does not
operate at a very low outage probability to compromise
secrecy, the EST is imposed by a P Eve

out -constraint ex-

pressed as Ψ =

{
Ψ, if P Eve

out ≤ P
Eve,th
out ,

0, if P Eve
out > P Eve,th

out
where P Eve,th

out

is the maximum allowed value of P Eve
out [4]. Note that

P Eve,th
out = 1 corresponds to Ψ with no constraints.

Lemma 5. The optimal value R∗s that maximizes
Ψ, denoted as Ψmax, with eavesdropper outage con-
straints for the RIS-aided mmWave system is given
by R∗s = min

(
R∗s,1, R

∗
s,2

)
, where R∗s,1 is the un-

constrained optimal value of Rs given by the so-
lution of the following fixed-point equation R∗s,1 =

γ

E,
(

2
CB−R

∗
s,1−1

)
2MLγ̄Es

(2MLγ̄Es )
Ee

2
CB−R

∗
s,1−1

2MLγ̄Es

2
CB−R∗

s,1
(

2
CB−R∗

s,1−1
)E−1

log(2)
, and R∗s,2 is the con-

strained optimal value of Rs, given by R∗s,2 =

log2

(
2CB

1+[2MLγ̄Es Γ
−1(E,P Eve,th

out Γ(E))]
2

)
, where Γ−1(·, ·) de-

notes the inverse of the upper incomplete Gamma func-
tion Γ(·, ·) defined in [12, (8.350.2)].

Proof. See Appendix D.

Corollary 2. When γ̄Es → 0 and γ̄Es →∞, we have the
asymptotic results Ψ→ Rs and Ψ→ 0, respectively.

Proof. With the help of [12, (8.352.6)] and setting E=1,

we can write Ψ = Rs

(
1−e−

(
2CB−Rs −1

2MLγ̄Es

))
. Then, it is

deduced that Ψ converges to Rs when γ̄Es → 0. This
completes the proof.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the EST results for the
adaptive-rate scheme in bit per channel use (bpcu). The
truncation value for the infinite summation in (3) is set
at 40, validated by Monte-Carlo simulations. System and
channel parameters are listed in the caption of Fig. 1.

In Fig. 1a, we demonstrate the effectiveness of various
RIS sizes in enhancing the secrecy throughput. Increas-
ing the RIS size by raising L significantly improves
Ψmax, as Bob’s SNR gain is L times greater than Eve’s,
as noted in Remark 2. Assuming the largest RIS size with
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Fig. 1. (a) varying L, P Eve,th
out = 1; (b) varying P Eve,th

out , L = 64. Common parameters in (a) and (b): γ̄B = 10 dB, γ̄Es = −5 dB,
M = 36, E = 9; (c) Exact and asymptotic Ψ with varying Rs over IFTR and Rayleigh channels, L = 64, M = 36, E = 9, P Eve,th

out = 1,
γ̄B = 10 dB. IFTR fading parameters: hl∼IFT R

(
m1,h,m2,h,K1,h,K2,h,∆h, σh

)
with m1,h = 2, m2,h = 7.5, K1,h = 5, K2,h = 7.

gB,l∼IFT R (m1,g ,m2,g ,K1,g ,K2,g ,∆g , σg) with m1,g =7.5, m2,g =2, K1,g =5, K2,g =7. Phase estimation-error: κPE = 45 dB.

L=64 and E=9 eavesdroppers, we further examine the
EST performance under eavesdropper outage constraints
defined in Lemma 5, across different P Eve,th

out levels, as
shown in Fig. 1b. It is observed that Alice can maintain
Ψmax ≈ 3.78 bpcu corresponding to R∗s,1 at P Eve,th

out = 1

and R∗s,2 at P Eve,th
out =10−1. However, to meet the secrecy

constraint with P Eve
out < 10−1, Alice must reduce R∗s to

a lower rate, resulting in the decreased achievable Ψmax.
For instance, the Ψmax is reduced to 3.67 bpcu and 3.43
bpcu when P Eve,th

out = 10−2 and 10−3, respectively. In
practice, Alice can pre-define the P Eve,th

out constraint based
on the average CSI estimated for Eve and the desired
achievable Ψmax.

In Fig. 1c, the analytical results of Ψ are plotted
against γ̄Es for different values of Rs over IFTR (i.e.,
mmWave) and Rayleigh (i.e., microwave) channels. The
asymptotic results confirm that Ψ → Rs and Ψ → 0
when γ̄Es → 0 and γ̄Es → ∞, respectively, as stated
in Corollary 2. Additionally, the EST performance is
identical over both mmWave and Rayleigh channels
when γ̄Es → 0 and γ̄Es →∞. Within a practical range
of γ̄Es (e.g., −5 ∼ 10 dB), mmWave channels achieve
a higher EST performance than Rayleigh channels for
the same γ̄Es . This performance gain increases with
higher values of Rs. The maximum performance gain
in mmWave channels is about 0.57 bpcu at γ̄Es = 0 dB
with Rs = 3 bpcu, and about 0.19 bpcu at γ̄Es = 6 dB
with Rs = 1 bpcu. This security gain is due to the strong
LoS components in mmWave links, represented by the
physical parameter K = 12 dB in the IFTR model,
compared to K = 0 dB in the Rayleigh model.

VI. CONCLUSIONS

In this paper, we presented the first investigation of
information-theoretic PLS performance in terms of the
EST for RIS-aided mmWave systems using the IFTR
fading model and considering multiple colluding Eves
under the MRC scheme. We provided a tractable ex-
pression of the IFTR model and approximated the true
statistical PDF of the end-to-end SNR at Bob by a

generalized Gamma distribution. For the end-to-end SNR
at the super Eve under the MRC scheme, we employed
a Gamma distribution. Using these approximations, we
determined the maximum EST satisfying both reliability
and secrecy constraints in the adaptive-rate scheme.

APPENDIX A
PROOF OF THEOREM 1

Following the framework in [6] and applying
the MRT beamformer f =

(
gH

BΦH
)H
/
∥∥gH

BΦH
∥∥,

the optimal RIS phase shifts can be calculated
by maximizing the received SNR at Bob as
Φopt = argmax

Φ

∣∣gH
BΦHf

∣∣2 = argmax
Φ

∥∥gH
BΦH

∥∥2
=

argmax
Φ

∣∣gH
BΦhaL

(
θAoA,a

RIS ,θAoA,e
RIS

)∣∣2 ∥∥aH
M

(
θAoD,a

BS ,θAoD,e
BS

)∥∥2
.

Using the identity
∥∥aH

M

(
θAoD,a

BS ,θAoD,e
BS

)∥∥2
= M

directly deduced from (1), after some
mathematical manipulations, we have Φopt =

argmax
Φ

∣∣∣∑L
l h
∗
l g
∗
B,lal

(
θAoA,a

RIS ,θAoA,e
RIS

)
eiφl
∣∣∣2, where

al
(
θAoA,a

RIS , θAoA,e
RIS

)
denotes the l-th element in

the array response vector aL
(
θAoA,a

RIS , θAoA,e
RIS

)
.

Thus, the optimal RIS phase shifts are derived
as φopt

l = −∠
(
h∗l g
∗
B,lal

(
θAoA,a

RIS , θAoA,e
RIS

))
, where

∠ gives the phase of the complex value. The
corresponding optimal reflection matrix can be
obtained as Φopt = diag

(
e−i∠(diag(gH

B)haL(θAoA,a
RIS ,θAoA,e

RIS ))
)
.

Using the optimal reflection matrix, the ideal
received instantaneous SNR at Bob is given as

γB = γ̄BM
∣∣∣∑L

l=1 |hl| |gB,l|
∣∣∣2 . However, considering

that the phase shifts induced by the channels are not
perfectly estimated by Bob, we model the deviation
from the ideal setting by the phase estimation error θ̃B,l

[10]. This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The received instantaneous SNR at the e-th
Eve can be expressed as γEe = γ̄Ee

∣∣gH
EeΦHf

∣∣2 =



γ̄Ee

∣∣∣∣gH
EeΦHgBΦHHH

‖gH
BΦH‖

∣∣∣∣2. Using the identity∥∥aH
M

(
θAoD,a

BS ,θAoD,e
BS

)∥∥2
= M deduced from (1), we

then have γEe = γ̄EeM
∣∣gH

EeΦhaL
(
θAoA,a

RIS ,θAoA,e
RIS

)∣∣2 =

γ̄EeM
∣∣∣∑L

l=1 g
∗
Ee,lh

∗
l al
(
θAoA,a

RIS ,θAoA,e
RIS

)
eiφl
∣∣∣2 . Using

the identity
∣∣al(θAoA,a

RIS ,θAoA,e
RIS

)∣∣ = 1 deduced
from (1), and the optimal RIS phase shifts
φopt
l = −∠

(
h∗l g
∗
B,lal

(
θAoA,a

RIS , θAoA,e
RIS

))
, we arrive at

γEe = γ̄EeM
∣∣∣∑L

l=1 g
∗
Ee,lh

∗
l e
−i∠(h∗

l g
∗
B,l)
∣∣∣2 . Since Φ is

optimized by maximizing the received SNR at Bob, it is
impossible for Eve to perfectly estimate the phase shifts
and compensate for the channel phases. As a result, we
consider that Eve suffers from severe phase estimation
errors, denoted as θ̃E,l. This completes the proof.

APPENDIX C
PROOF OF THEOREM 4

Let us define YB,l
∆
=|hl| |gB,l|eiθ̃B,l and XB,l=|hl| |gB,l|.

Since XB,l and eiθ̃B,l are statistically independent, we
infer that E[Y ςB,l] =E[Xς

B,l]E
[
eiςθ̃B,l

]
, where E[Xς

B,l]

can be directly derived from Lemma 4 as E
[
Xς
B,l

]
=

µXB,l(ς) =
∑∞
j1=0

∑∞
j2=0Λl,j1ΛB,l,j2

(
2σ2

1

)ς
2
(
2σ2

2

)ς
2

Γ(1+j1+ ς
2 )Γ(1+j2+ ς

2 )
Γ(j1+1)Γ(j2+1) . On the other hand, the ς-th

statistical moment of eiθ̃B,l can be deduced from the
characteristic function of the von Mises distribution
[10], written as E

[
eiςθ̃B,l

]
= Iς(κPE)

I0(κPE) , where κPE is the
loop SNR of the PLL defined in Lemma 2, I0(·) and
Iς(·) are the modified Bessel functions of the first kind
with zero-order and ς-order, respectively. Then, the first
and second moments of YB,l can be derived by replacing
ς = 1, 2 in E

[
Xς
B,l

]
, which are expressed as µYB,l(1)=

2σ1σ2

∑∞
j1=0

∑∞
j2=0Λl,j1ΛB,l,j2

I1(κPE)Γ(j1+3
2 )Γ(j2+3

2 )
I0(κPE)Γ(j1+1)Γ(j2+1) ,

µYB,l(2) = 4σ2
1σ

2
2

∑∞
j1=0

∑∞
j2=0Λl,j1ΛB,l,j2

I2(κPE)Γ(j1+2)Γ(j2+2)
I0(κPE)Γ(j1+1)Γ(j2+1) , where Λl,j1 and ΛB,l,j2 follow
(4) in Theorem 3. Now, we propose to approximate
YB,l by a Gamma RV. Novel closed-form expressions
for the approximated parameters (αYB,l , βYB,l) can be
respectively derived by plugging µYB,l(1) and µYB,l(2)
into αYB,l and βYB,l in Theorem 4. Consequently,
the true PDF of ZB follows a generalized Gamma
distribution, i.e., ZB ∼ G(αZB , βZB ). This completes
the proof.

APPENDIX D
PROOF OF LEMMA 5

The unconstrained optimal value R∗s,1 in Lemma 5
can be obtained by applying the first-order derivative
∂Ψ(Rs) /∂Rs = 0, and solving to Rs. Similar to [3],
[4], finding stationary points via the first-order derivative
is untractable. Thus, we investigate through detailed

simulations. Howver, one can derive the inverse function
of P Eve

out inferred from the closed-form expression of Ψ
for P Eve,th

out to find the constrained optimal value R∗s,2. It
is noted that Ψ increases for Rs < R∗s,1 and decreases
for Rs > R∗s,1, thus the unconstrained R∗s,1 represents
the maximum target secrecy rate in the sense that any
value other than the optimal value R∗s =R∗s,1 will result
in a lower value of Ψ. Nevertheless, with a pre-defined
P Eve,th

out constraint for P Eve
out , R∗s cannot be larger than R∗s,2.

Therefore, R∗s is the minimum value between R∗s,1 and
R∗s,2. This completes the proof.
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